
YieldSpace: An Automated Liquidity Provider

for Fixed Yield Tokens

Allan Niemerg

allan@yield.is

Dan Robinson

dan@paradigm.xyz

Lev Livnev

lev@dapp.org

August 2020
WORKING DRAFT, rev. 1

Abstract

The Yield Protocol introduced the concept of fyTokens, a fungible
token similar to a zero-coupon bond that allows fixed-rate borrowing and
lending and interest rate discovery on the Ethereum blockchain. While
fyTokens can be traded anywhere, including automated liquidity providers
like Uniswap, the formulas used by those systems are not optimized for
fyTokens, resulting in higher price impact and fees for traders of close-to-
maturity fyTokens, and predictable losses due to arbitrage for liquidity
providers. This paper introduces a new formula for automated liquidity
provision, the “constant power sum invariant,” which incorporates time
to maturity as an input and ensures that the liquidity provider offers a
constant interest rate—rather than price—for a given ratio of its reserves.
The paper also introduces a generally useful methodology that can be
used to derive invariants for pools with desired properties.

1 Introduction

In the Yield Protocol paper [1], the authors introduced fyTokens, a synthetic
token that is redeemable for a target asset after a fixed maturity date.1 The
price of a fyToken floats freely before maturity, and that price implies a particu-
lar interest rate for borrowing or lending that asset until the fyToken’s maturity.
fyTokens can be traded anywhere that supports ERC20 trading, including ex-
isting protocols for pooled liquidity provision like Uniswap. For fyTokens with
a target asset that is itself an ERC20, the most obvious pair for it to be traded
against would be that target asset.

For this paper, we will focus on fyDai, the first token that is being imple-
mented using the Yield Protocol [2] (although the design described will likely

1In previously released versions of that paper, and of this one, fyTokens were called
“yTokens.”

1

mailto:allan@yield.is
mailto:dan@paradigm.xyz
mailto:lev@dapp.org


work for other fyTokens). fyDai are fyTokens with Dai as the target asset. fy-
Dai may be redeemed one-for-one for Dai at maturity. When far from maturity,
fyDai could trade at varying prices. When close to maturity, fyDai is likely to
trade close to 1 Dai, regardless of the interest rate, because of its impending
redeemability for Dai.

Most popular protocols for swapping tokens on Ethereum use pooled liq-
uidity provision and set their prices automatically based on a formula. These
formulas are typically expressed as invariants specifying some fixed relation
between the reserves of the two assets. For example, Uniswap uses the con-
stant product invariant x · y = k, where x and y are the pool’s reserves of the
two assets. These invariants can be chosen based on the properties that they
guarantee the pool’s reserves will always obey.

The invariants used by existing automated liquidity providers are not op-
timized for fyTokens. The constant product formula used by Uniswap [3] and
Balancer [4] would likely be capital-inefficient for fyTokens that are close to
maturity. The constant sum formula used by mStable [5] gives up on price
discovery entirely, and thus would likely discourage trading (since the price of
fyDai will vary over time and will almost always be below 1 Dai before matu-
rity). Hybrid formulas like Curve’s compromise between these two models, but
do not tell us how to adjust their parameters based on time to maturity.

Indeed, these formulas are typically pure functions of reserves (and other
constant parameters), and none of them incorporate time. For given reserve
balances, the price offered remains constant as time passes. These pools would
therefore suffer from predictable losses to arbitrage as maturity approaches and
fyDai price moves toward 1, even if interest rates do not change.

This paper introduces a new invariant that is optimized for market-making
between fyTokens and their target tokens, the “constant power sum formula”:

x1−t + y1−t = k (1)

y represents the reserves of the fyToken (such as fyDai), and x represents
the reserves of the target token (such as Dai).

t represents time to maturity. We will assume that the units for t are nor-
malized so that 0 ≤ t < 1. In the initial implementation of fyDai, the units are
normalized so that t = 1 at four years from maturity.

This curve resembles a hybrid between constant sum and constant product.
When t = 0, the formula reduces to the constant sum formula x + y = k,
which provides liquidity at a constant price of 1. When you take the limit as t
approaches 1, the formula approximates the constant product formula x · y = k
(as proven in Appendix D).

2



DAI Reserves (x)

fy
D

A
I

R
es

er
ve

s
(y

)

Reserves in a constant power sum pool (x1−t + y1−t = k)

t = 0.99 . . .
t = 0.5
t = 0

This formula can be treated as a pricing formula in “yield space,” rather
than “price space.” As explained below, this formula has the unique property
that the marginal interest rate of fyDai that is offered by the pool at any time
is equal to the ratio of the fyDai reserves to the Dai reserves (minus 1):

r =
y

x
− 1 (2)

For example, if the fyDai reserves are 110 and the Dai reserves are 100, the
marginal price offered by the pool would imply an interest rate of 10%.

The formula also ensures that the marginal interest rate offered by the pool
does not change over time if the reserves do not change. Put another way,
the target fyDai allocation of the pool increases over time at exactly the same
interest rate implied by the current price of fyDai. While this does not eliminate
losses due to arbitrage, it does mean that arbitrage opportunities should only
arise when interest rates change.

The constant power sum invariant has been implemented as part of an au-
tomated pooled liquidity provider for fyDai: YieldSpace. While YieldSpace was
implemented by the Yield team, it is decoupled from the core fyDai contracts,
and can be upgraded independently.

Section 2 describes some prior work on invariant-based liquidity provision
formulas. Section 3 describes a generally applicable methodology for deriving
new invariants with desired properties, by expressing those properties as dif-
ferential equations and solving them. Section 4 shows how the constant power
sum formula can be derived. Section 5 describes how to incorporate fees into
this formula in a way that takes into account interest rates and time to matu-
rity. Finally, Section 6 describes how liquidity tokens work, and introduces an
optimization that improves the capital efficiency of the pool.

3



2 Invariant-based liquidity provision formulas

Most of the popular protocols for swapping tokens on Ethereum, including
Uniswap, Curve, Balancer, and Bancor, make use of some invariant—an algo-
rithm for automatic liquidity provision that can be expressed (ignoring fees) in
terms of the relation between the pool’s reserves of one asset, y, and its reserves
of another asset, x.

2.1 Constant sum formulas

Perhaps the simplest possible liquidity provider, the constant sum formula,
always trades assets at the same price:

x+ y = k (3)

mStable [5] is a protocol that builds on this basic formula to provide liquidity
between stablecoins.

This formula could be generalized to support prices other than 1. The fol-
lowing is the formula for a liquidity provider that always buys and sells asset x
at price p:

p · x+ y = k (4)

The constant sum formula is optimized for tokens that always trade at ex-
actly the same relative price. If the relative price of the tokens diverges from
the expected price, a pool using a constant sum formula would be expected to
end up holding only the less valuable token, and doing relatively little volume
(since it would have none of the more valuable token to sell, and would only
offer the less valuable token above its market price). Since fyDai can trade at
varying prices over their lifetime, the constant sum formula would be a poor fit
unless the fyDai is already mature (and thus should trade at parity with Dai).

2.2 Constant product formulas

The constant product formula was first proposed in its most recognizable
form2 by Alan Lu of Gnosis [8]:

x · y = k (5)

This formula was implemented on Ethereum as part of the Uniswap protocol
[3]. This formula maintains the property that at the current price offered by
the protocol, the pool’s reserves of each token are equal in value.

2Around the same time, Bancor [6] [7] proposed an equivalent formula, expressed in a
different way. Bancor’s formula—which, changing some variable names, can be written as
∆s = s0 · ((1 + xin

x0
)wx − 1)—relates a minting or burning of “smart tokens” to deposits or

withdrawals of just one of the reserve assets. It can be shown that this formula is equivalent
to the invariant xwx · ywy · zwz . . . = s, where s is the current supply of the smart tokens.

4



Lu also proposed a version of the constant product formula that supports
more than two assets (x, y, z. . . ), as well as custom weightings (wx, wy, wz. . . )
for the pool’s holdings:

xwx · ywy · zwz . . . = k (6)

This formula was implemented on Ethereum as part of the Balancer protocol
[4].

Constant product formulas could be suitable for fyTokens whose maturities
are very distant. However, they are a poor fit for fyTokens that are closer to
maturity (such as those maturing within a year).

First, as a fyToken approaches maturity, its price tends towards parity with
its target token. The constant product formula reserves liquidity for prices along
the full price spectrum, leaving a relatively small amount of liquidity around
any particular price. This means that larger trades will likely have a significant
impact on the interest rate earned or paid.

Second, the trading fees charged by those formulas are proportional to the
amount traded, regardless of the time to maturity or the current interest rate.
When the fyToken is very close to maturity, even a small fee could result in a
huge interest rate spread. For example, if a fyToken is 1 month from maturity
and annualized interest rates are 5%, a 0.3% fee would mean that the marginal
borrow rate would be 1

0.95·0.99712−1 = 9.1% and the marginal lending rate would

be 0.99712

0.95 − 1 = 1.01%—more than an 8% spread.
Finally, because these formulas do not take into account time to maturity,

liquidity providers are subject to predictable “impermanent loss” as fyTokens
approach maturity and traders execute arbitrage trades that push the price
toward parity. While the constant power sum formula cannot eliminate imper-
manent loss, it may reduce it, by exposing the pool to arbitrage only when the
interest rate changes, rather than whenever the price changes.

2.3 Other invariants

Curve implements a custom formula for assets whose prices are expected to
trade around (but not necessarily exactly at) a constant price. The formula
shown in Curve’s StableSwap paper [9] can be rewritten for the two-token case
as the following (where χ is an amplification coefficient):

χ · k · (x+ y) + x · y = χ · k2 +
k2

4
(7)

Note that if χ = 0, this curve reduces to the constant product formula. As
χ approaches infinity, the curve approaches the constant sum formula.

While Curve’s formula is more flexible than the constant sum or constant
product formulas, it does not give us a way to compute this amplification factor
χ as a function of time to maturity. As a result, it does not ensure that the
interest rate offered by the pool remains constant, or that the pool’s liquidity
remains balanced across a range of interest rates, as time passes.

5



3 How to build your own invariant

Suppose you want to come up with a liquidity provision formula that satisfies
some desired property. For example, suppose we are looking for the formula that
maintains a 50-50 portfolio of two assets. Given this desired property, how can
we come up with a liquidity provision formula that satisfies it, expressed in
terms of an invariant relationship between the reserves x and y?

First, let’s observe an important fact about all of these curves. If Alice sells
some quantity of the x asset to the pool, the pool’s x reserves increase by that
amount—call it dx—and the pool’s y reserves decrease by some amount—call it
−dy (since y is going down, the change in y, dy, is negative, so −dy is the amount
of the y asset that is sent out). The ratio −dydx represents the price at which

Alice sold the x asset. This ratio for an infinitesimally small dx— lim
dx→0

−dy
dx

—the

negation of the derivative at that point—gives you the marginal price offered
by the contract at that point.

px = −dy
dx

(8)

This means that if we want a formula that satisfies some relation between
price, reserves, and any other quantity (like time), we can try to find an invari-
ant that satisfies it by rewriting that property as a differential equation. (By
specifying xstart and ystart, we can turn it into an initial value problem.)

For example, suppose we want a formula that always offers to trade at the
fixed price of 1. This can be expressed as the trivial differential equation:

1 = −dy
dx

(9)

As shown in Appendix A, the solution to this is the constant sum formula.
As another example, suppose we wanted a formula that gives us the property

that, at the current price offered by the contract, the reserves of the pool’s two
assets are equal in value. Since px is the price of the x token in terms of the y
token, this desired relationship can be expressed as px · x = y. Since px = − dy

dx ,
we can rewrite this property as:

−dy
dx

=
y

x
(10)

As shown in Appendix B, the solution to this differential equation is the
constant product formula x · y = k.

The same process can be used to find the version of the constant sum formula
that offers tokens at prices other than 1, as well as the versions of the constant
product formula that support more than two tokens, or weights other than
50/50.

Not every desired relation will give us a differential equation that can be
solved, but this works often enough to be a powerful tool to discover new for-
mulas with desired properties.

6



4 The constant power sum formula

We want to build a liquidity provision formula that works in “yield space”
rather than “price” space. Specifically, we want the interest rate—not the
price—to be a pure function of reserves.

There are many possible choices for what this function could be. We chose
to find the formula where the interest rate3 is the ratio of the fyDai reserves (y)
and Dai reserves (x), minus one.

r =
y

x
− 1 (11)

We can motivate this choice by analogy to the constant product formula,
which, as described above, uses the ratio between the reserves as the price.
We also note that it observes the desirable property that increases in fyDai
reserves increases the interest rate, while increases in the Dai reserves decrease
the interest rate. Finally, this property happens to give us a solveable differential
equation, allowing us to find a closed-form invariant that can be efficiently
implemented in the contract.

As described in the Yield Protocol paper [1], the interest rate of fyDai can
be computed as a function of the current price of Dai in terms of fyDai, p, and
the time to maturity, t:

r = p
1
t − 1 (12)

For example, if 1 fyDAI that expires six months from today is currently
worth 0.5 DAI (meaning the Dai price in terms of fyDai, p, is 2), that implies

that the annualized interest rate is 2
1

0.5 − 1 = 300%.
Simplifying the two equations above gives us this equation:

p =
(y
x

)t
(13)

In any invariant-based liquidity provision formula, the price at any point
along the curve is equal to the negation of the derivative at that point.

p = −dy
dx

(14)

So, finding the curve where the interest rate is always equal to the ratio of
the reserves minus one reduces to solving the following differential equation:

−dy
dx

=
(y
x

)t
(15)

As shown in Appendix C, the solution to this differential equation is the
following equation:

x1−t + y1−t = k (16)
3For purposes of this derivation, we can imagine that this is the annualized interest rate.

As discussed below, we could actually normalize this to any time period, simply by changing
the units for t.

7



4.1 Properties

As mentioned in Section 1 and shown in Appendix D, the constant power
sum formula gradually evolves from the constant product formula at limt→1 to
the constant sum formula at t = 0:

DAI Reserves (x)

fy
D

A
I

R
es

er
ve

s
(y

)

Evolution of reserve formula in a constant power sum pool (0% rates)

t = 0.99 . . .
t = 0.5
t = 0

The invariant x1−tstart+y
1−t
start is recomputed for each trade based on the current

value of t, and the current reserves for x and y. This means the curve “pivots”
around the point representing the current reserves. The above chart shows how
the curve evolves when rates are 0%. If rates are 100% (meaning the pool has
twice as much fyDai as Dai), the evolution of the curve would look like:

8



DAI Reserves (x)

fy
D

A
I

R
es

er
ve

s
(y

)

Evolution of reserve formula in a constant power sum pool (100% rates)

t = 0.99 . . .
t = 0.5
t = 0

The marginal price (of Dai in terms of fyDai) for a given xstart, ystart, and
t is given by the formula:

(y
x

)t
=

(x1−tstart + y1−tstart − x1−t
) 1

1−t

x

t

(17)

The price curve gradually flattens as maturity approaches:

DAI Reserves (x)

D
ai

P
ri

ce
(i

n
y
D

ai
)

((
y
/x

)t
)

Dai price (in yDai) in a constant power sum pool

t = 0.99 . . .
t = 0.5
t = 0.125
t = 0

9



However what if we look at interest rates instead of price? Recall the formula
for the marginal interest rate:

y

x
− 1 =

(
x1−tstart + y1−tstart − x1−t

) 1
1−t

x
− 1 (18)

The graph of interest rates changes only minimally as maturity approaches:

−100%

0%

100%

200%

300%

400%

DAI Reserves (x)

In
te

re
st

ra
te

(y
/x
−

1)

Interest rates in a constant power sum pool

t = 0.99 . . .
t = 0.5
t = 0.125
t = 0

In other words, this formula provides liquidity across a relatively consistent
range of interest rates over the lifetime of the contract.

Notice that, when interest rates are 0%, at least half of the Dai liquidity
in the contract is reserved for providing liquidity at interest rates greater than
100%. If this represented annualized interest rates, that would be a lot of
liquidity reserved for a relatively unlikely case. To maximize the useful liquidity
in the pool, the contract normalizes the units for t so that t = 1 at four years,
which will mean that the interest rate given by the formula y

x is the four-year
interest rate, rather than the annualized interest rate.

Even more significantly, when interest rates are 0%, all of the pool’s fyDai
is reserved for providing liquidity at negative interest rates, which means it is
wasted (since fyDai should never trade at a price higher than 1 Dai). Section
6.3 discusses this problem and a mitigation for it.

5 Fees

To incentivize liquidity providers to deposit tokens into the pool, it is cus-
tomary to charge a fee on every trade.

10



Because the constant power sum formula buys fyDai (and earns interest on
it) when interest rates rise and sells it when interest rates fall, it is possible
for the pool to outperform the returns on both fyDai and Dai, even before
fees. (By contrast, a static invariant that does not incorporate time will always
underperform at least one of its constituent assets, before fees.) Still, to further
reward liquidity, we can build a fee into the protocol.

In other protocols, fees are typically charged in proportion to the amount
being sold. For example, in Uniswap v2, a 0.3% fee is charged on the tokens sent
into the contract before the amount sent out is computed. However, when a
fyToken is close to maturity, even a modest fee can translate into a wide spread
in interest rate terms.

We want our fees, like our prices, to be computed in “yield space” rather than
“price space”—meaning that they should impose some proportional spread on
interest rates, rather than on prices. For example, in a fee-adjusted formula, a
buyer of fyDai should receive a lower interest rate (equivalent to paying a higher
price) than with the no-fee formula derived in section 4. We believe the simplest
way to adjust the interest rate downward is to raise it (before subtracting 1) to
some constant power g that is less than 1:

r =
(y
x

)g
− 1 (19)

For example, if the pool’s fyDai balance is 110, its Dai balance is 100, and
g is 0.95, then the unadjusted formula would give us a marginal interest rate of
110
100 − 1 = 10%. The adjusted formula will give us a marginal interest rate of
110
100

0.95 − 1 ≈ 9.47%.
Notice that the fee charged—0.5%—was approximately 5% of the current

interest rate. When interest rates are relatively small and g < 1, the binomial
approximation tells us that (1 + r)

g ≈ 1 + gr.
The actual invariant used depends on the direction of the trade. When the

trader is buying fyDai from the contract, the above invariant is used with a g
less than 1 to reduce the interest rate (and thus increase the price paid for the
fyDai). If the user is selling fyDai to the contract, the interest rate is raised to
the power of 1

g instead, causing the user to pay a higher interest rate (in other

words, receive a lower price for the fyDai they are selling).
In the above example, the marginal interest rate for a borrower—someone

selling fyDai to the pool—would be 110
100

1
0.95 − 1 ≈ 10.55%.

By transforming the fee equation described above into a differential equation
and solving it using essentially the same steps used in section 4 and Appendix
C, we derive the following invariant (replacing gt with t

g when selling fyDai4):

x1−gt + y1−gt = k (20)

One other convenient property of this fee formula is that splitting up a
trade into multiple pieces does not result in paying higher or lower fees (modulo

4Using t
g

in this way means we need to change our assumption that t < 1 to an assumption

that t
g
< 1, to avoid any divisions by 0 in our calculations.

11



precision errors). When fees are charged as a percentage of the tokens sent in (as
they are in Uniswap and most others), this property does not hold—a user who
splits a trade into multiple pieces pays higher fees than if they had combined
them. This helps make fees more amenable to analysis.

6 Liquidity tokens

As in Uniswap, anyone can add liquidity to a pool by providing Dai and
fyDai in proportion to the reserves that are already in the pool. When they
provide liquidity, they are minted a proportional share of liquidity tokens.

6.1 Initialization

Pools must be initialized with equal reserves of Dai and fyDai, implying a
price of 1 and an interest rate of 0%. To initialize a pool with a different interest
rate, you can initialize it at 0% and then atomically trade with it to push it to
the desired interest rate.

The number of pool tokens initially minted is equal to the quantity of Dai
supplied.

When liquidity pool tokens are initialized in this way, the following invariant
is guaranteed to not decrease with any state changes of the contract (as shown
in Appendix E):5 (

x
1− t

g
start+y

1− t
g

start

2

) 1

1− t
g

s
(21)

As the pool accumulates fees from trading and interest from its fyDai hold-
ings, the value of this invariant rises.

6.2 Minting and burning

Minting and burning liquidity tokens works similarly as in Uniswap and other
pooled liquidity provision protocols. When a new liquidity provider enters the
pool, they deposit Dai and fyDai in proportion to the Dai and fyDai already in
the contract’s reserves, and receive newly minted liquidity tokens in the same
proportion to the total supply in the pool:

∆s

sstart
=

∆x

xstart
=

∆y

ystart
(22)

5As discussed in the Appendix, the version of the invariant with t
g

is used to properly

handle an edge case in which Dai is donated to the contract.

12



6.3 Capital efficiency

Under normal circumstances, 1 fyDAI will never naturally trade at a higher
price than 1 DAI (which would correspond to a negative interest rate). The core
fyDai protocol always allows you to mint 1 fyDAI by depositing 1 DAI collateral
(with no risk of liquidation), so there is no reason to buy fyDai from the pool at
a price greater than 1 DAI. Additionally, the above formulas assume that the
price of fyDAI is never greater than 1.6 As a result, the pool checks at the end
of each trade that the fyDAI price is not above 1 DAI—or, equivalently, that
the fyDai reserves are greater than the Dai reserves.

As a result of this requirement, there is some portion of the fyDai reserves
that the pool will never touch:

DAI Reserves (x)

fy
D

A
I

R
es

er
ve

s
(y

)

Inaccessible fyDai reserves in a constant power sum pool

t = 0.99 . . .
t = 0.5
t = 0

For example, when the pool is first initialized, the fyDai reserves and Dai
reserves are equal, so none of the fyDai remaining in the pool can be sold.
The quantity of inaccessible fyDai at any given time is given by computing the
amount of fyDai that would be in the contract if there was an immediate trade
to a 1-to-1 ratio. The solution to this7 happens to be this formula:(

x1−gtstart + y1−gtstart

2

) 1
1−gt

(23)

6For example, the fee formula is constructed under the assumption that the interest rate
is positive.

7Note that this formula assumes that the trade needed to push the price to parity is a
fyDai buy rather than a sell. The latter case can happen after someone donates Dai to the
pool, but in that case, no fyDai is accessible at all, since buys are prohibited, so we do not
need to consider that case.

13



We can improve the capital efficiency of the pool by making some of these ex-
cess reserves “virtual” and not requiring liquidity providers to contribute them.

Notice that the above formula is similar to the numerator from the invariant
in equation 21. As shown in Appendix F, the amount of inaccessible fyDai will
always be greater than or equal to the total supply of shares.

As a result, we can use the total supply of liquidity tokens s as the virtual
fyDai reserves. Whenever a trade occurs, the virtual fyDai reserves are added to
the actual fyDai reserves to determine the reserves used to calculate the outcome
of the trade. But whenever liquidity tokens are minted, the minter only has
to provide fyDai proportional to the actual fyDai in the pool’s reserves. The
virtual fyDai reserves will automatically go up in proportion (since total supply
s increases proportionally, thanks to the newly minted liquidity tokens).

For example, suppose Alice initializes a pool with 100 Dai. The new total
supply of liquidity tokens s is 100, and Alice receives 100 liquidity tokens.

Suppose Alice then sells 100 fyDai to the pool at time t = 0.5. Since this is

a sell, the pool uses the invariant x
1− t

g

end + y
1− t

g

end = x
1− t

g

start + y
1− t

g

start. For xstart, the
pool uses the actual Dai reserves, 100. For ystart, the pool adds the actual fyDai
reserves (0) to the virtual fyDai reserves, which is equal to the total supply s,
100. Finally, for yend, the pool adds the fyDai in (100) to ystart (including the
virtual reserves), to get 200. Solving for xend (with g = 0.95) gives us the result
x = 34.31, meaning 100− 34.31 = 65.69 Dai is sent out of the contract.

Now suppose Bob mints 10 new liquidity tokens (10% of the total supply)
by adding liquidity. The pool currently has 34.31 Dai in its reserves, so Bob
deposits 3.43 Dai. The pool has only 100 actual fyDai, so Bob only has to
deposit 10 fyDai. Finally, when the 10 liquidity tokens are minted to Bob, the
total supply (and thus the virtual fyDai reserves) increases to 110. In the next
trade, the value for ystart will be 100 + 110 = 210.

With this optimization, the contract has zero inaccessible fyDai upon ini-
tialization. However, as soon as there is a trade, the fees increase the value
of liquidity shares. As the pool accumulates trading fees and the value of its
fyDai increases due to interest, the invariant above increases, meaning that an
increasing share of fyDai becomes inaccessible.

7 Acknowledgments

This paper is heavily indebted to discussions with Hayden Adams, Guillermo
Angeris, Dmitriy Berenzon, Tarun Chitra, Zubin Koticha, Hart Lambur, Teo
Leibowitz, Mikhail Vladimirov, Cyrus Younessi, and Noah Zinsmeister. The
authors are particularly grateful to Paradigm for supporting this research.

14



Appendices

A Deriving the constant sum formula

We can show that the solution to the differential equation below is the con-
stant sum formula, by integrating both sides with respect to x and simplifying.

1 = −dy
dx

(24)

∫
dx =

∫
−dy (25)

x+ c1 = −y + c2 (26)

x+ y = c1 + c2 = k (27)

B Deriving the constant product formula

We can show that the solution to the differential equation below is the con-
stant product formula.

−dy
dx

=
y

x
(28)

First, we rewrite the equation:

−1

y
· dy
dx

=
1

x
(29)

We then integrate both sides with respect to x:∫
−1

y
dy =

∫
1

x
dx (30)

− ln y + c1 = lnx+ c2 (31)

lnx+ ln y = c1 − c2 (32)

By raising e to the power of each side, and defining the constant ec1−c2 as
k, we can rewrite this as the constant product formula:

x · y = k (33)

15



C Deriving the constant power sum formula

We can show that the solution to the differential equation below is the con-
stant power sum formula.

−dy
dx

=
(y
x

)t
(34)

First, we rewrite the equation:

−dy
dx

= x−t · yt (35)

−y−t · dy
dx

= x−t (36)

We then integrate both sides with respect to x:∫
−y−tdy =

∫
x−tdx (37)

− y
1−t

1− t
+ c1 =

x1−t

1− t
+ c2 (38)

By multiplying both sides by 1− t and defining the constant (1− t) · (c1−c2)
as k, we can rewrite this as the constant power sum formula:

x1−t + y1−t = k (39)

D Deriving the limit of the constant power sum
formula as t approaches 1

We can show that as t approaches 1, the constant power sum formula (x1−t+
y1−t = x1−tstart + y1−tstart) approaches the constant product formula (x · y = xstart ·
ystart).

The constant power sum formula can be rewritten to make y a function of
x (with xstart and ystart as constants):

y = (x1−tstart + y1−tstart − x1−t)
1

1−t (40)

This function can be rewritten in log form:

ln (y) =
ln (x1−tstart + y1−tstart − x1−t)

1− t
(41)

When t = 1, the right side of the equation is the indeterminate form 0
0 , but

applying L’Hôpital’s rule gives us the limit:

ln y = lim
t→1

∂
∂t ln (x1−tstart + y1−tstart − x1−t)

∂
∂t (1− t)

(42)

16



ln y =
− ln (xstart)− ln (ystart) + ln (x)

−1
(43)

ln y = ln (xstart) + ln (ystart)− ln (x) (44)

lnx+ ln y = ln (xstart) + ln (ystart) (45)

Raising e to the power of both sides gives us the constant product function
x · y = xstart · ystart.

E Proving the invariant for total supply

We will show that the invariant below begins at 1 when the pool is initial-
ized, and does not decrease during any of the contract’s state changes (mint-
ing/burning, trading, and time passing).(

x
1− t

g +y
1− t

g

2

) 1

1− t
g

s
(46)

The reason we use this invariant rather than the one with 1−t is to handle an
edge case where someone directly donates enough Dai to the contract to cause
the fyDai price to go above 1 Dai (and implied interest rate to go negative).
Buys will be prohibited in this state, but sells of fyDai will not (and are needed
to return to positive interest rates). When interest rates are negative, the fee
benefits the trader rather than the pool, meaning that it is possible for the
invariant that uses 1 − t to decrease when someone sells fyDai to the pool at
a price above 1. Using the above invariant (which is directly enforced during
sells) avoids this.

E.1 Initialization

When the pool is initialized, xstart, ystart, and s are all equal. Substituting
s for the other variables in the above formula shows that the initial value for
the invariant is 1: (

s
1− t

g +s
1− t

g

2

) 1

1− t
g

s
(47)

(
s1−

t
g

) 1

1− t
g

s
(48)

1 (49)

17



E.2 Minting and burning

We can show that minting or burning shares (which causes x, y, and s to be
multiplied by the same proportion, m) does not change the invariant:(

(m·x)1−
t
g +(m·y)1−

t
g

2

) 1

1− t
g

m · s
(50)

(
m1− g

t ·(x1− t
g +y

1− t
g )

2

) 1

1− t
g

m · s
(51)

m ·
(

(x
1− t

g +y
1− t

g )
2

) 1

1− t
g

m · s
(52)

(
(x

1− t
g +y

1− t
g )

2

) 1

1− t
g

s
(53)

E.3 Trading

Next, we will show that the invariant does not decrease as a result of trading.
Since s and 1

1− t
g

do not change during trading, we can simplify our analysis and

look only at the core expression of this invariant:

x1−
t
g + y1−

t
g (54)

Note that this is exactly the same invariant that is enforced by the formula
for selling fyDai described in section 5. As a result, we only need to show that
this invariant only increases during buys of fyDai.

The above invariant was constructed so that the derivative dy
dx would be:

dy

dx
= −

((y
x

)t) 1
g

(55)

Buys of fyDai use a different adjusted version of the constant power sum
formula:

x1−gt + y1−gt = k (56)

Recall that this invariant was constructed so that the derivative dy
dx would

be:

dy

dx
= −

((y
x

)t)g

(57)

18



Buys involve an increase in x and a decrease in y. For a given increase in x,
we need to show that the decrease in y using the invariant for buys is less than
or equal to than the decrease in y using the other invariant:((y

x

)t)g

≤
((y

x

)t) 1
g

(58)

Raising both sides to the power of 1
t , taking the logarithm of both sides, and

multiplying both sides by g gives us:

g2 · ln y
x
≤ ln

y

x
(59)

Since g ≤ 1, this inequality will be true if we can divide both sides by ln y
x

without flipping the inequality, which will only be possible if ln y
x > 0. This

will be true when y > x. Since buys are disallowed whenever y ≤ x, this is
guaranteed to be true for all buys, so the invariant will never decrease during a
buy.

E.4 Time

Finally, we can show that as time passes (causing t, time to maturity, to
decrease), the numerator of the invariant always increases (or stays the same).
(Since the denominator of the invariant does not change as time passes, we can
ignore it. We can also use t rather than gt, since this coefficient will not change
whether the derivative with respect to t will ever be positive.) To do this, we
will take the partial derivative with respect to time, and show that it is always
less than or equal to 0:

∂

∂t

(
x1−t+y1−t

2

) 1
1−t

s
≤ 0 (60)

(
x1−t + y1−t

2

) 1
1−t

·

(
ln
(
x1−t + y1−t

)
− ln 2

(1− t)2
− x1−t · lnx+ y1−t · ln y

(1− t) · (x1−t + y1−t)

)
≤ 0

(61)
We can divide both sides by the numerator from our invariant, multiply by

(1− t)2 · (x1−t + y1−t), and further rewrite some terms to get:8

(
ln
x1−t + y1−t

2

)
·
(
x1−t + y1−t

)
−
(
x1−t · lnx1−t + y1−t · ln y1−t

)
≤ 0 (62)

We can show with substitution that if x1−t = y1−t, then the left side of the
expression is equal to 0.

8The values used in these multiplications and divisions are guaranteed to always be greater
than 0.

19



lnx1−t ·
(
2 · x1−t

)
−
(
2 · x1−t · lnx1−t

)
(63)

We can then show that this is a local and global maximum—the left side is
only equal to 0 if x1−t = y1−t, and is less than 0 if they are not equal.

First, we define a = x1−t and b = y1−t, which allows us to rewrite the
expression as:

ln
a+ b

2
· (a+ b)− (a · ln a+ b · ln b) (64)

We can take the derivative of this expression with respect to a, and show
that it is only equal to 0 if a = b:

∂

∂a
ln
a+ b

2
· (a+ b)− (a · ln a+ b · ln b) = 0 (65)

ln
a+ b

2
− ln a = 0 (66)

ln
a+ b

2
= ln a (67)

a+ b

2
= a (68)

b = a (69)

Finally, we can determine that this is a maximum rather than a minimum
or inflection point by taking the second derivative and showing that it is less
than 0 when a = b (and indeed for any positive a and b):

∂

∂a
ln
a+ b

2
− ln a (70)

− b

ab+ a2
(71)

This proves that the derivative of the invariant with respect to t is less than
or equal to 0 at all points, meaning that as time to maturity decreases, the
invariant will either increase or stay the same.

F Proving that number of shares will always be
less than or equal to inaccessible fyDai

We can show that the total supply of shares will always be greater than or
equal to the amount of inaccessible fyDai (meaning fyDai that can safely be
“virtual” rather than actual):

20



y∅ ≤ s (72)

As shown in Appendix E, the following condition is guaranteed to hold
throughout the lifetime of the contract:(

x
1− t

g +y
1− t

g

2

) 1

1− t
g

s
≥ 1 (73)

This can be rewritten as:(
x1−

t
g + y1−

t
g

2

) 1

1− t
g

≥ s (74)

The amount of inaccessible fyDai at any time (when it is possible to buy
fyDai at all) is:

y∅ =

(
x1−gt + y1−gt

2

) 1
1−gt

(75)

Therefore, to prove that y∅ ≥ s, it is sufficient to prove that the following
equation is true when 0 < x, 0 < y, 0 < g ≤ 1 and 0 ≤ t < g:

(
x1−gt + y1−gt

2

) 1
1−gt

≥

(
x1−

t
g + y1−

t
g

2

) 1

1− t
g

(76)

Taking the logarithm of both sides gives us:

ln
(
x1−gt + y1−gt

)
− ln 2

1− gt
≥

ln
(
x1−

t
g + y1−

t
g

)
− ln 2

1− t
g

(77)

This can be rewritten as:

ln
(
x1−gt + y1−gt

)
− ln 2

1− gt
−

ln
(
x1−

t
g + y1−

t
g

)
− ln 2

1− t
g

≥ 0 (78)

Note that when x = y, the left side is equal to 0. Therefore, all we need to
show is that this is a global minimum of that expression. To do that, we take
the first derivative of the expression with respect to x:

d

dx

 ln
(
x1−gt + y1−gt

)
− ln 2

1− gt
−

ln
(
x1−

t
g + y1−

t
g

)
− ln 2

1− t
g

 (79)

ygt

x · ygt + y · xgt
− y

t
g

x · y
t
g + y · x

t
g

(80)

21



x · ygt+
t
g + y1+gt · x

t
g −

(
x · ygt+

t
g + y1+

t
g · xgt

)
(81)

y1+gt · x
t
g − y1+

t
g · xgt (82)

By solving for when this first derivative is 0, we can find the function’s only
stationary point:

ygt−
t
g = xgt−

t
g (83)

y = x (84)

Therefore, this derivative is only equal to 0 when x = y (given that gt− t
g 6=

0).
To prove that this is a minimum, we can take the second derivative with

respect to x:

∂

∂x

(
y1+gt · x

t
g − y1+

t
g · xgt

)
(85)

t

g
· y1+gt · x

t
g−1 − gt · y1+

t
g · xgt−1 (86)

When x = y, x > 0, and 0 < t < g < 1 this second derivative is positive:

t

g
· xgt+

t
g − gt · xgt+

t
g (87)

(
t

g
− gt

)
· xgt+

t
g (88)

This means this point is a minimum. This tells us that the expression above
always greater than or equal to 0, and thus that y∅ ≤ s.

References

[1] Dan Robinson and Allan Niemerg. The Yield Protocol: On-Chain Lending
With Interest Rate Discovery. url: https://yield.is/Yield.pdf.

[2] Allan Niemerg. Introducing fyDai. url: https://medium.com/yield-

protocol/introducing-ydai-43a727b96fc7.

[3] Hayden Adams. Uniswap. url: https://uniswap.org/docs/.

[4] Fernando Martinelli and Nikolai Mushegian. A non-custodial portfolio man-
ager, liquidity provider, and price sensor. url: https://balancer.finance/
whitepaper/.

[5] mStable. mASSETS. url: https://docs.mstable.org/mstable-assets/
massets.

22

https://yield.is/Yield.pdf
https://medium.com/yield-protocol/introducing-ydai-43a727b96fc7
https://medium.com/yield-protocol/introducing-ydai-43a727b96fc7
https://uniswap.org/docs/
https://balancer.finance/whitepaper/
https://balancer.finance/whitepaper/
https://docs.mstable.org/mstable-assets/massets
https://docs.mstable.org/mstable-assets/massets


[6] Guy Benartzi Eyal Hertzog and Galia Benartzi. Bancor Protocol: Contin-
uous Liquidity for Cryptographic Tokens through their Smart Contracts.
url: https://whitepaper.io/document/52/bancor-whitepaper.

[7] Meni Rosenfeld. Formulas for Bancor system. Dec. 2016. url: https://
drive.google.com/file/d/0B3HPNP-GDn7aRkVaV3dkVl9NS2M/view.

[8] Alan Lu. Mar. 2017. url: https : / / blog . gnosis . pm / building - a -

decentralized-exchange-in-ethereum-eea4e7452d6e.

[9] Michael Egorov. StableSwap - efficient mechanism for Stablecoin liquid-
ity. url: https://medium.com/yield-protocol/introducing-ydai-
43a727b96fc7.

8 Disclaimer

This paper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any in-
vestment and should not be used in the evaluation of the merits of making any
investment decision. It should not be relied upon for accounting, legal or tax
advice or investment recommendations. This paper reflects current opinions of
the authors and is not made on behalf of Paradigm or its affiliates and does
not necessarily reflect the opinions of Paradigm, its affiliates or individuals as-
sociated with Paradigm. The opinions reflected herein are subject to change
without being updated.

23

https://whitepaper.io/document/52/bancor-whitepaper
https://drive.google.com/file/d/0B3HPNP-GDn7aRkVaV3dkVl9NS2M/view
https://drive.google.com/file/d/0B3HPNP-GDn7aRkVaV3dkVl9NS2M/view
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
https://medium.com/yield-protocol/introducing-ydai-43a727b96fc7
https://medium.com/yield-protocol/introducing-ydai-43a727b96fc7

	Introduction
	Invariant-based liquidity provision formulas
	Constant sum formulas
	Constant product formulas
	Other invariants

	How to build your own invariant
	The constant power sum formula
	Properties

	Fees
	Liquidity tokens
	Initialization
	Minting and burning
	Capital efficiency

	Acknowledgments
	Deriving the constant sum formula
	Deriving the constant product formula
	Deriving the constant power sum formula
	Deriving the limit of the constant power sum formula as t approaches 1
	Proving the invariant for total supply
	Initialization
	Minting and burning
	Trading
	Time

	Proving that number of shares will always be less than or equal to inaccessible fyDai
	Disclaimer

